
Microprocessors (0630371)
Fall 2010/2011 – Lecture Notes # 18

Conditional Jumps Instructions

� No high-level control structures in assembly language
� The most common way to transfer control in assembly language is to use a conditional jump.

This is a two-step process:
1. First test the condition.
2. Then jump if the condition is true or continue if it is false.

� Conditional jump instructions can be divided into four groups:
3. Jumps based on the value of a single arithmetic flag
4. Jumps based on the value of CX or ECX
5. Jumps based on comparisons of signed operands
6. Jumps based on comparisons of unsigned operands

� Conditional Jump Instruction has the following syntax:
 Jcond destination ; cond is the jump condition

� The following is a list of jumps based on the Zero, Carry, Overflow, Sign, and Parity flags.

Mnemonic Description Flags

JZ, JE Jump if Zero, Jump if Equal ZF = 1

JNZ, JNE Jump if Not Zero, Jump if Not Equal ZF = 0

JC Jump if Carry CF = 1

JNC Jump if No Carry CF = 0

JO Jump if Overflow OF = 1

JNO Jump if No Overflow OF = 0

JS Jump if Signed (Negative) SF = 1

JNS Jump if Not Signed (Positive or Zero) SF = 0

JP, JPE Jump if Parity, Jump if Parity is Even PF = 1

JNP, JPO Jump if Not Parity, Jump if Parity is Odd PF = 0

� The following table shows the jumps based on the value of CX and ECX:

Mnemonic Description

JCXZ Jump if CX = 0

JECXZ Jump if ECX = 0

Signed and unsigned numbers follow different orders.

� The following table shows a list of

Mnemonic

JG, JNLE Jump if Greater, Jump if Not Less or Equal

JGE, JNL Jump if Greater or Equal, Jump if Not Less

JL, JNGE Jump if Less, Jump if N

JLE, JNG Jump if Less or Equal, Jump if Not Greater

� The following shows a list of

Mnemonic

JA, JNBE Jump if Above, Jump

JAE, JNB Jump if Above or Equal, Jump if Not Below

JB, JNAE Jump if Below, Jump if Not Above or Equal

JBE, JNA Jump if Below or Equal, Jump if Not Above

� All conditional jumps except two (

Thus, any statement that sets or clears a flag can serve as a test basis for a conditional jump. The
jump statement can be any one of 30 conditional

Signed and unsigned numbers follow different orders.

The following table shows a list of signed jumps based on comparisons of signed

Description Condition Tested

Jump if Greater, Jump if Not Less or Equal ZF = 0 and SF = OF

Jump if Greater or Equal, Jump if Not Less SF = OF

Jump if Less, Jump if Not Greater or Equal SF ≠ OF

Jump if Less or Equal, Jump if Not Greater ZF = 1 or SF

The following shows a list of unsigned jumps based on comparisons of unsigned

Description Condition Tested

Jump if Above, Jump if Not Below or Equal ZF = 0 and CF = 0

Jump if Above or Equal, Jump if Not Below CF = 0

Jump if Below, Jump if Not Above or Equal CF = 1

Jump if Below or Equal, Jump if Not Above ZF = 1 or CF = 1

nal jumps except two (JCXZ and JECXZ) use the processor flags for their criteria.
Thus, any statement that sets or clears a flag can serve as a test basis for a conditional jump. The
jump statement can be any one of 30 conditional-jump instructions

signed operands:

Condition Tested

ZF = 0 and SF = OF

SF = OF

≠ OF

ZF = 1 or SF ≠ OF

unsigned operands:

Condition Tested

ZF = 0 and CF = 0

CF = 0

CF = 1

ZF = 1 or CF = 1

) use the processor flags for their criteria.
Thus, any statement that sets or clears a flag can serve as a test basis for a conditional jump. The

Programming Examples
Example 1: Jump to a label if an integer is even.

� Solution: AND the lowest bit with a 1. If the result is Zero, the number was even.
mov ax,wordVal
and ax,1 ; low bit set?
jz EvenValue ; jump if Zero flag set

Example 2: Write code that jumps to a label if an integer is negative.
� Task: Jump to a label if the value in AL is not zero.
� Solution: OR the byte with itself, then use the JNZ (jump if not zero) instruction.

or al,al
jnz IsNotZero ; jump if not zero
ORing any number with itself does not change its value.

Example 3: jump to a label if either bit 0 or bit 1 in AL is set.
test al,00000011b
jnz ValueFound

Example 4: jump to a label if neither bit 0 nor bit 1 in AL is set.
test al,00000011b
jz ValueNotFound

Example 5: Jump to a label if unsigned EAX is greater than EBX
� Solution: Use CMP, followed by JA

cmp eax,ebx
ja Larger

Example 6: Jump to a label if signed EAX is greater than EBX
� Solution: Use CMP, followed by JG

cmp eax,ebx
jg Greater

Example 7: Jump to label L1 if unsigned EAX is less than or equal to Val1
cmp eax,Val1
jbe L1 ; below or equal

Example 8: Jump to label L1 if signed EAX is less than or equal to Val1
cmp eax,Val1
jle L1

Example 9: Compare unsigned AX to BX, and copy the larger of the two into a variable named
Large

mov Large,bx
cmp ax,bx
jna Next
mov Large,ax
Next:

Example 10: Compare signed AX to BX, and copy the smaller of the two into a variable named
Small

mov Small,ax
cmp bx,ax
jnl Next
mov Small,bx
Next:

Example 11: Jump to label L1 if the memory word pointed to by ESI equals Zero
cmp WORD PTR [esi],0
je L1

Example 12: Jump to label L2 if the doubleword in memory pointed to by EDI is even
test DWORD PTR [edi],1
jz L2

Example 13: Jump to label L1 if bits 0, 1, and 3 in AL are all set.
� Solution: Clear all bits except bits 0, 1,and 3. Then compare the result with 00001011 binary.

and al,00001011b ; clear unwanted bits
cmp al,00001011b ; check remaining bits
je L1 ; all set? jump to L1

Try to

� Write code that jumps to label L1 if either bit 4, 5, or 6 is set in the BL register.
� Write code that jumps to label L1 if bits 4, 5, and 6 are all set in the BL register.
� Write code that jumps to label L2 if AL has even parity.
� Write code that jumps to label L3 if EAX is negative.
� Write code that jumps to label L4 if the expression (EBX – ECX) is greater than zero.

Example 14:
TITLE Finding the Maximum of 3 Integers (max.asm)

.686

.MODEL flat, stdcall

.STACK
INCLUDE Irvine32.inc
.data
var1 DWORD -30 ; Equal to FFFFFFE2 (hex)
var2 DWORD 12
var3 DWORD 7
max1 BYTE "Maximum Signed Integer = ",0
max2 BYTE "Maximum Unsigned Integer = ",0
.code
main PROC
 ; Finding Signed Maximum
 mov eax, var1
 cmp eax, var2
 jge L1
 mov eax, var2
L1:
 cmp eax, var3
 jge L2
 mov eax, var3
L2:
 lea edx, max1
 call WriteString
 call WriteInt
 call Crlf
 ; Finding Unsigned Maximum
 mov eax, var1
 cmp eax, var2
 jae L3
 mov eax, var2

L3:
 cmp eax, var3
 jae L4
 mov eax, var3
L4:
 lea edx, max2
 call WriteString
 call WriteHex
 call Crlf
 exit
main ENDP
END main

Example 15:
String Encryption Program

� Tasks:
� Input a message (string) from the user
� Encrypt the message
� Display the encrypted message
� Decrypt the message
� Display the decrypted message

To encrypt and decrypt the text , we use the following interesting
property of xor instruction

���� �� � �� � �

TITLE Encryption Program (Encrypt.asm)
; This program demonstrates simple symmetric
; encryption using the XOR instruction.
INCLUDE Irvine32.inc
KEY = 239 ; any value between 1-255
BUFMAX = 128 ; maximum buffer size
.data
sPrompt BYTE "Enter the plain text: ",0
sEncrypt BYTE "Cipher text: ",0
sDecrypt BYTE "Decrypted: ",0
buffer BYTE BUFMAX+1 DUP(0)
bufSize DWORD ?
.code
main PROC
 call InputTheString ; input the plain text
 call TranslateBuffer ; encrypt the buffer
 mov edx,OFFSET sEncrypt ; display encrypted message
 call DisplayMessage
 call TranslateBuffer ; decrypt the buffer
 mov edx,OFFSET sDecrypt ; display decrypted message
 call DisplayMessage
 exit
main ENDP

;---
InputTheString PROC
; Prompts user for a plaintext string. Saves the string
; and its length.
; Receives: nothing
; Returns: nothing
;---
 pushad
 mov edx,OFFSET sPrompt ; display a prompt
 call WriteString
 mov ecx,BUFMAX ; maximum character count
 mov edx,OFFSET buffer ; point to the buffer
 call ReadString ; input the string
 mov bufSize,eax ; save the length
 call Crlf
 popad
 ret
InputTheString ENDP
;---
DisplayMessage PROC
; Displays the encrypted or decrypted message.
; Receives: EDX points to the message
; Returns: nothing
;---
 pushad
 call WriteString
 mov edx,OFFSET buffer ; display the buffer
 call WriteString
 call Crlf
 call Crlf
 popad
 ret
DisplayMessage ENDP
;---
TranslateBuffer PROC
; Translates the string by exclusive-ORing each
; byte with the encryption key byte.
; Receives: nothing
; Returns: nothing
 pushad
 mov ecx,bufSize ; loop counter
 mov esi,0 ; index 0 in buffer
L1: xor buffer[esi],KEY ; translate a byte
 inc esi ; point to next byte
 loop L1
 popad
 ret
TranslateBuffer ENDP
END main

Example 15: Sequential Search
; Receives: esi = array address
; ecx = array size
; eax = search value
; Returns: esi = address of found element
search PROC USES ecx
 jecxz notfound
L1:
 cmp [esi], eax ; array element = search value?
 je found ; yes? found element
 add esi, 4 ; no? point to next array element
 loop L1
notfound:
 mov esi, 0 ; if not found then esi = 0
found:
 ret ; if found, esi = element address
search ENDP

Example 16: Scanning an Array
TITLE Scanning an Array (ArryScan.asm)
; Scan an array for the first nonzero value.
INCLUDE Irvine32.inc
.data
intArray SWORD 0,0,0,0,1,20,35,-12,66,4,0
;intArray SWORD 1,0,0,0
;intArray SWORD 0,0,0,0
;intArray SWORD 0,0,0,1
noneMsg BYTE "A non-zero value was not found",0
.code
main PROC
 mov ebx,OFFSET intArray ; point to the array
 mov ecx,LENGTHOF intArray ; loop counter
L1:
 cmp WORD PTR [ebx],0 ; compare value to zero
 jnz found ; found a value
 add ebx,2 ; point to next
 loop L1 ; continue the loop
 jmp notFound ; none found
found:
 movsx eax,WORD PTR [ebx] ; otherwise, display it
 call WriteInt
 jmp quit
notFound:
 mov edx,OFFSET noneMsg ; display "not found" message
 call WriteString
quit:
 call crlf
 exit
main ENDP
END main

